Skip to content

Alternating Series Test

Tags
Calculus
Cegep/2
Word count
197 words
Reading time
2 minutes

Test to determine whether a series that alternates between positive and negative diverges

Let n=1bn=n=1(1)nan or n=1(1)n+1an.
Then if

  1. limnbn=0
  2. {bn}n=1 is decreasing for n(N,)

then an is convergent.

Examples

Determine if the following series are convergent:

n=1(1)ncos(nπ)n3+1

n=1=(1)ncos(nπ)n3+1=(1)n(1)nn3+1=1n3+1

n=1(5)n(n+1)5n

n=1(5)n(n+1)5n=n=1(1)nn+1

Let bn=1n+1.

Since limn1n+1=0 and f(x=1x+1)f(x)=1(x+1)2<0xR,
By AST, bnn=1 is decreasing for n1.

Contributors

Changelog